
1 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

2 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

3 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

The relational model imposes structure on content.
Specifically, a relational design specifies two important characteristics of the data
contained in each table.
1.  It describes the physical structure of the data to be stored. This includes

columns, data types, whether values may be left out, etc.
2.  It describes the business meaning of the data to be stored. A column name

describes what kind of data it contains in business terms. (e.g. Customer names,
customer addresses, etc.)

This paradigm has some important implications.
•  Structure and meaning are determined in advance, before rows can be recorded.

That is, a table must be defined before a row can be stored.
•  The structure of a row is rigid; each row must adhere to the declared structure of

the table.
While this predictability may be advantageous from an application development
point of view, it can also be seen as unreasonably rigid.

4 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

There are several forms of non-relational storage. The most fundamental is the key-
value store, which stores key-value pairs (also sometimes called attribute-value
pairs.).
Key value pairs are exactly what the name implies– combinations of keys and
values. The example above shows several key value pairs that describe a customer.
Notice that the structure (data types) and content (business meaning) of pairs are not
defined in advance. Anything can fit in a key value pair.
This is extraordinarily flexible. On the other hand, if you want to find something,
you have to know where to look. The model is in the data itself.
Key value stores will be explored in Part 3 of this course.

5 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Another form of non-relational storage is the document-oriented database, or
document database.
These data stores track self-contained documents.
Documents do not have pre-determined structure. Instead, they have internal, self-
defined structure.
Documents that describe a single business concept, like a customer, are referred to
as a collection. The documents in a collection are not required to have the same
structure.
Documents can also contain repeating attributes (called arrays) or even other
documents. They may also refer to one another, but it is up to applications to be sure
these associations are accurate.
We will explore document-oriented data stores in Part 4.

6 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

In a graph database, the objective is to explore how things are related to one another.
This may sound similar to relational technology, but graph databases do this in a
fundamentally different way.
In a relational database, the focus is on things. Relationships are enabled through
primary key/foreign key relationships and an expensive join process.
In a graph database, there are nodes and properties, which are similar to entities and
attributes. However, there is third concept called an “edge”. Edges describe the
associations between nodes.
In a graph database, elements are stored with links to any associated elements. This
is called “index free adjacency” and it allows the exploration of relationships
without indexes.
The illustration above depicts the relationships and nodes that describe a customer
order.
.

7 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

This illustration shows some example data that might be captured based on the
model from the previous page.

8 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Each type of data store has its own unique vocabulary. Some of the fundamental
terms are summarized in the table above.

9 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

As businesses move into the world of big data, we face several new challenges.
As previously discussed, big data expands the scope of information asset
management beyond the scope of enterprise data. As we move to include data from
other sources, traditional data management challenges become magnified.
•  How do we understand, manage, and cope with quality issues for data that is not

created by enterprise systems?
•  How do we work with data that has ambiguous meaning?
•  Is it possible to build solutions when external sources cannot provide data

elements on a consistent or reliable basis?
•  How to we extend data governance programs to cover these new forms of data?

Are the rules and standards the same or different?

10 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

The fact that data can be managed on numerous platforms introduces new
challenges as well.
•  It is necessary match data’s characteristics and consumption to a variety of

different platforms, each with unique strengths.
•  Information asset management must deal with additional complexity driven by

this variety. Simple flows from source to target are no longer the rule; instead
there are many kinds of data stores and flows to plan and manage.

•  Practices and skills are different on each platform. Organizations must internalize
new sets of best practices, and be sure that sufficient expertise is available.

•  Data management platforms require different maintenance and management
procedures, with must become part of the operational profile of the BI program.

11 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Many of the new forms of data management are not based on the notion of a single
pre-defined schema that specifies structure and consent.
•  Does this mean there is no data model?
•  How does the business cope with data when its format cannot be predicted in

advance?
•  Is it possible to govern such data, or apply master data management techniques?
•  How do you find information with no schema?

12 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

With big data analytics, the traditional uses of data have increased.
•  Information asset management has grown in scope from simple transaction

processing to incorporate a variety of BI and Analytic functions.
•  BI programs have an increasing number of responsibilities, and must manage

dependencies across functions.

13 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Traditional BI programs focused on enterprise transaction data and leveraged
relational and multi-dimensional storage.
The purposes of information management and associated best practices are founded
on this aging view.
In Part 2, we will look at new purposes served by data stores in the age of big data.

14 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Most of us begin with a relational perspective on data.
In a relational data model:
•  Schema is known in advance
•  Schema tells us the shape of data (e.g. data types, optionality)
•  Schema tells us the meaning of data (e.g. “Customer”, “Author” etc.)
In the world of big data, these assumptions are not guaranteed.
This course will help bridge this gap. Starting with the familiar, we will look at the
kinds of things data describes. Then we will explore how these things may be
represented in alternative technologies.

15 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

16 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Before we look at the ins-and-outs of non-relational storage, let’s step back and look
at relational storage.
Traditionally, relational storage has been used for transaction processing (OLTP) and
for data warehousing.
Within the world of transaction processing, it is necessary to support the various
inserts/updates/deletes/reads that take place, while guaranteeing referential
integrity. Relational storage and associated ER modeling techniques evolved to meet
these needs.
Data warehousing brings with it a new set of needs. Data stores are used to facilitate
intake and integration of OLTP data. Here, this is shown in a hub-and-spoke
model. The hub must also distribute data to several data marts. The data marts
themselves deliver information to business people, and support self-service access.
Within the world of data warehousing, both ER and dimensional modeling
techniques are employed to serve the purposes of intake, integration, distribution,
delivery and access.

17 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

As you saw in Part 1, relational storage calls for a model to be defined prior to
recording data. In other words, the table bust be defined before you can record a
row.
This paradigm is often referred to as schema on write. The word “schema” refers to
the form of the data – its structure and content. “Schema on write” means that the
structure and format of the data must be declared prior to actually recording any
data.
The advantage of schema on write is the predictability:
•  When it is time to record data, we know exactly where it goes
•  When it is time to access data, we know exactly where to find it
The disadvantage of schema on write is its lack of flexibility:
•  We have to know what is important about data in order to record it
•  There is no flexibility in what we record. Every row of every table must have the

same structure.

18 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

When modeling for relational storage, there are five fundamental kinds of
information we attempt to capture:
Things In a logical ER model, things are represented as entities. In a third normal
form (3NF) physical model, the are represented by tables. In a dimensional model,
we call them dimensions.
Properties In a logical ER model, properties are represented by attributes. In a 3NF
physical model, they are columns. In a dimensional model, we call them dimension
attributes.
Identities are attributes that uniquely identify things. In an ER model, we call them
UID’s. In a physical model, they are called primary keys or alternate keys. In a
dimensional model, we call them surrogate keys or natural keys.
Associations link things together in a business context. In an ER model, we call
them relationships. In a physical model, we call them primary-key/foreign-key
relationships.
Metrics quantify an activity or business process. In an ER model, they are a subset
of attributes. In a dimensional model, they are called facts.
In Parts 3-5, we will show how these fundamental concepts are handled in non-
relational data stores.

19 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Modeling for fixed, relational storage begins with an understanding of business
requirements before proceeding to a spec for a solution. Typically, this is done in
three stages.
•  The first step is creation of a conceptual model – a high level representation of

needs. One common example of a conceptual model is a “subject model” – a
high level representation of 10-12 major business subjects and their relationships.

•  The next step is a logical model, which specifies functional characteristics of a a
solution. An ER model is a common form of logical model.

•  The last step is to develop a physical model. A physical model is the
specification for physical storage. It contains definitions of tables, columns, data
types, and so forth.

Another way to look at this progression considers the characteristics of the model.
At the conceptual level, the primary focus is on things. At the logical level, there is
an increased focus on associations and properties. At the physical level, all
characteristics are defined. There is a progression from Things à Associations à
Properties

20 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

For projects that use relational storage, division of labor a byproduct of the top-
down approach. Typical roles at each level are:

Conceptual Requirements Analyst

 Data Architect

Logical Data Architect

 Data Modeler

Physical Data Modeler

 Database Administrator

21 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

The traditional BI categories of “intake, integration, distribution, delivery, access”
are not fit to describe use cases for modeling in the world of big data.
Chris Adamson identifies four uses for non-relational data stores:
Capture Provide a repository that can be used to bring new information sources

under the control of an information asset management. The relational
model may not be fit to the task if the structure of data is not known,
varies, or does not lend itself to relational storage.

Explore Create a data store that can be used to explore the data to find business
value. This may be an analytic sandbox used to develop a predictive
model, or a repository used to link new data to enterprise data to search
for useful information.

Augment Use non-relational storage as a staging area to bring new data elements
into the data warehouse. This can only be done once exploration has
identified value.

Extend Maintain data in a non relational extension of the data warehouse.
Users who drill to detail in the data warehouse can then drill through to
non-relational detail, such as an XML record of a transaction.

22 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

When it comes to non-relational data, schema-on-write is not always practical.
Perhaps we don’t control the data that is flowing in. Even if we do, we may not
know exactly where the value lies. A predefined structure (or schema) does not fit
the bill.
With non-relational storage, it is possible to capture data and then learn about its
structure (or schema) after the fact.
Of course, when we query the data for business purposes, we have to be able to tell
the DBMS what we want and where to get it. At the time of reading the data, the
schema must be known. Hence the term schema on read. We will explore schema
on read in the context of Map Reduce in Part 3, Key-Value Stores.
Schema on read places a heavy burden on applications that use data. They must tell
the DBMS what they are looking for and where to find it. For example, if you wish
to see all products of a certain color in a key-value store, you need program a
request to look for keys called “Color” with value “Blue”, as well as keys called
“Blue” with value “True”. There is no “column” called color that you can query.
Note: It is also possible to employ a schema-on-write paradigm with non-relational data,
though the DBMS may not enforce it. For example, a document repository can accept
customer orders regardless of format (schema on read) or enforce a single format
programmatically (schema on write). However, the document store will not impose this
format; it must be managed by the application that records the data. More on document

23 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

When we develop a model to describe non-relational data, we capture the same
kinds of elements previously described.
Each storage paradigm emphasizes different characteristics of data.

24 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

This course will use a standard notation to construct logical models for information
stored in relational and non-relational databases. This notation is used to capture the
business value of the information store.

Things Represented by rounded rectangles. The name of the thing appears in

all capital letters.
Identities Indicated by a star: ★�

They can appear in things or beneath associations.
Properties Listed in lower case and may contain spaces. They can appear in

things or beneath associations.
 Data types are not specified for properties.
 Properties can repeat in some non-relational stores. Repeating
properties are listed with a double pointer: »
 Properties may be self-defining. These are represented using square
braces with a generic name such as [property]

Metrics Indicated with four diamonds: v
Associations Indicated by double lines between things:

 Associations may have identifiers and properties.

25 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

How do we produce a model of non-relational data? The process varies, but often
we begin with raw data. A log file dumped into a key value-store, for example,
represents the unknown. What is there? Is it valuable to the business?
We explore this data to understand it, and in the process develop a model. For
example, a business analyst and programmer write programs to explore the log, and
find that it contains timestamps, geographic coordinates, and identifiers. A model
begins to emerge.
How is this information useful to the business going forward? The last step is to
define the business value. For example, it may be useful to append this information
to a package delivery record in the data warehouse.
Another way to think about how this process differs from the relational process
discussed previously is to look at how the model comes into focus. In the relational
world, we observed a progression like this:

Things à Associations à Properties
In this non-relational example, we started with properties and eventually organized
them to describe things and associations.

Properties à Things à Associations

26 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Development of models for non-relational data is a fundamentally different process
from relational model development. So it should come as no surprise that it requires
different roles as well.
Business Subject Matter Expert The business subject matter expert is a key

participant in modeling for non-relational storage. These people may not
write the code necessary to explore the database or draw the models. But
they are the only ones that can truly know when we have found something
useful in the data.

Analytic Modeler Someone who knows how to apply statistical analysis and data
mining techniques to construct models that describe or predict useful
business concepts or events. These people are often called data scientists.
They know how to work with data, but need business experts to point
them in the right direction.

Programmer Many non-relational data stores are accessed programmatically. For
example, a map-reduce operation in Hadoop is usually written in Java or
Python.

27 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

This page summarizes the key differences we have identified between relational and
non-relational storage.

28 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Non-relational technology does not replace relational technology, it compliments it.
It is easy to lose sight of this amidst all the excitement of new technology.
In 2013, TDWI attendees packed a ballroom to hear Ken Rudin talk about how
Facebook was using Hadoop to generate business impact.
During the presentation, Rudin shocked the audience by pointing out that one of his
top priorities was to implement a relational database. Hadoop was great for some
things, he said. But when it came to analyzing facts and dimensions, relational is the
technology you need.

29 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

30 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Key-value stores are the simplest form of database management systems. They can
only store pairs of keys and values, as well as retrieve values when a key is known.
These simple systems are normally not adequate for complex applications. On the
other hand, it is exactly this simplicity, that makes such systems attractive in certain
circumstances. For example resource-efficient key-value stores are often applied in
embedded systems or as high performance in-process databases.

31 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

The real power of key-value stores in big data is adaptability. Because the concept is
simple it can easily be adapted to represent nearly any kind of data. The KVP
concept has become the basis for many NoSQL databases. Big table data stores and
big table clones (wide-column stores) are use KVP as a foundation, as do document
databases.

32 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

The examples shown here illustrate three of the many possible applications of KVP
data structures.
The example on the left has data for several occurrences of location. Each location is
a thing with a key – location 1, location 2, etc. – and a value that names a city
associated with the location. This example shows one thing, many occurrences of
that thing, and a single descriptive property – the city name – for each occurrence.
The keys, in this instance, identify distinct occurrence of location.
The example on the right has data for one occurrence of a thing – a character – and
describes several properties of that thing. The keys in this example name the
properties with which data values are associated.
The example on the bottom has data for several categories -- colors. Each category
has an associated metric – a count that describes the category. The keys in this
example are the categories with which the metrics are associated.

33 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

MapReduce is a software framework to process large amounts of unstructured data
in parallel. It was originally developed at Google. An open source implementation
of MapReduce is part of Apache Hadoop.
MapReduce processing is programmatic, and may involve several phases. Its name
comes from two phases that are commonly included. The map step separates and
structures the data, “mapping” it into key-value pairs. The reduce step summarizes
to yield an output dataset that is physically smaller than the input.
There may be other operations (such as a shuffle), and there is not always a reduce
step.
The example in the illustration comes from TDWI’s “TDWI Big Data
Fundamentals” course. An input file is split across multiple nodes in a cluster of
computers. Then a MapReduce program processes the data:
•  The map step imposes some structure on the data, transforming it into key-value

pairs that will be useful in processing the data (color and count)
•  A shuffle redistributes the pairs based on the key (color) in order to optimize the

next step
•  The reduce summarizes the data for each key (color)
•  The results are then combined to answer the business question

© Adamson, Fuller, Wells. All rights reserved. DO NOT COPY 34

In Apache Hadoop 2.0, MapReduce jobs are defined programmatically, using
languages such as Python or Java to make calls to the MapReduce library.
In the example, notice that key-value models are created twice. The mapper
reorganizes data around keys that represent colors. This allows the shuffle step to
redistribute the data to nodes by color, making the reduce step possible. The reducer
produces another set of key-value pairs, in this case a list of colors and their
quantities. The final result is output to a file.
In other words: the data is modeled first to support processing, and second to
produce a desired output.
Most importantly, all of these key value pairs are defined in the program that was
written to count colors. None of it is applied in advance; none is imposed by a DBA
on the “back end.”
MapReduce programs must define the data structures to be processed, as well as the
algorithms to process the data data. In the relational world, applications do not
have these responsibilities.

© Adamson, Fuller, Wells. All rights reserved. DO NOT COPY 35

While key-value pair models are often embedded in code, it is important to
understand where they are being used to answer business questions.
Our modeling notation can be used to describe the business value (key-value pair
output) of a MapReduce program. This includes concepts like identities, attributes,
things, associations and metrics.
Here the location example illustrates how identities are represented in KVP data
structures. The key is the identity – each of location1, location2, location3, etc. are
identifiers. The notation on the right shows how these identities are represented in a
data model.

36 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Using the character example and extending from key-value construct to key-key-
value illustrates how identities are represented with many records for one occurrence
of a thing. Here we see two characters, Donald Duck and Mickey Mouse, each with
several rows of data. Recalling the earlier constraint for key-value stores – each key
appears only once in the data collection – this construct appears to be a violation.
Key-value processing, however, concatenates the two keys and treats them as a
single key. Each combined key appears only once in the data collection.

37 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Here the location example illustrates how properties are represented in KVP data
structures. The values are the properties showing the city name for each location.
The notation on the right shows how these properties are represented in a data
model.

38 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Using the character example and extending from key-value construct to key-key-
value illustrates how multiple properties are represented for multiple occurrences of
a thing. The numeric key is the identifier of each character, the alphabetic key names
the property that is represented, and each value is specific to the unique combination
of character and property. The notation on the right shows how this construct is
represented in a data model.

39 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Associations are also represented as key-value pairs. In this example, Donald Duck
works at Los Angeles – the character with id number 60127 works at location 1. The
key-value pair that is highlighted shows how the association can be stored as a key-
value pair. Note that Location1, a key in the previous examples, has taken on the
role of value. The notation at the bottom of the page shows the association in data
model form.

40 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

When representing metrics (or facts) as KVP data the key is categorical – it
identifies a category for which something is quantified. The value stores the
quantity. This example counts characters by species. KVP structures frequently
collect counts by category, something that MapReduce does particularly well.

41 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

An embedded system is a computer system within a larger mechanical or electrical
system, typically with real-time processing constraints. Automobiles use many
embedded systems such as engine monitoring and cruise control. Industrial
embedded systems in manufacturing are often used to reduce emissions and improve
energy efficiency by controlling electrical and mechanical devices.
Key-value stores are are commonly used in embedded systems where real-time
processing and responsiveness are critical. The simplicity of key-value stores, while
limiting for complex applications, makes them a good fit for the demands of high-
performing embedded systems.

42 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Similar to embedded systems, in-process databases have high-performance and real-
time demands. The simplicity and efficiency of key-value stores makes them a good
choice to persist data for applications such as mobile apps, stock trading
applications, web monitoring, etc.

43 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

As previously discussed, KVP is the foundation upon which NoSQL databases are
built. The image above illustrates common kinds of NoSQL databases – wide
column, document, and graph data stores – with a brief description and some
examples of each.

44 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

© Adamson, Fuller, Wells. All rights reserved. DO NOT COPY 45

Exercise 3: Key-Value Pairs Modeling

Warranty 4 AccordInterior Black
PriusExterior Beige Warranty 3
PriusTrim III PriusExterior White
Service>Plan Platinum PriusInterior Gray
AccordExterior Silver PriusInterior Black
Warranty 1 PriusTrim PlugAin
Service>Plan Gold PriusTrim II
PriusExterior Silver PriusExterior Gray
PriusExterior Charcoal PriusTrim Persona
AccordInterior Burgundy AccordExterior Beige
PriusExterior Green AccordInterior Off>White
AccordTrim EXAL AccordInterior Gray
AccordExterior Black AccordTrim Sport
AccordInterior Blue AccordExterior Burgundy
AccordExterior Gray AccordExterior Blue
AccordInterior Gold PriusExterior Black
PriusInterior Off>White PriusExterior Turquoise
AccordExterior Green PriusInterior Tan
AccordTrim Hybrid PriusTrim Four
Warranty 2 PriusExterior Blue
PriusTrim Two AccordInterior Beige
PriusTrim Five AccordTrim EX
PriusExterior Red PriusTrim Touring
AccordTrim Touring AccordTrim LXAS
Warranty out Warranty 5
AccordTrim HybridTouring AccordInterior Tan
AccordExterior Red AccordTrim SE
AccordTrim LX AccordExterior White
PriusTrim Three ServicePlan Bronze
AccordExterior Gold PriusInterior Beige
Warranty 6 PriusTrim IV
AccordInterior Black AccordTrim Hybrid>EXAL
Warranty 3 ServicePlan Silver
AccordExterior Gold ServicePlan Lifetime
Warranty 6

46 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Document Databases (also referred to as Document-oriented Databases) manage
self-contained units called….documents.
Documents do not have pre-determined structure. Instead, they have internal, self-
defined structure.
Documents that describe a single business concept, like a customer, are referred to
as a collection. The documents in a collection are not required to have the same
structure.
Documents can also contain repeating attributes (called arrays) or even other
documents. They may also refer to one another, but it is up to applications to be sure
these associations are accurate.

47 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Database designs for relational data stores use the terms Table, Column and Row to
describe basic features.

Table: A table collects instances of a particular type of thing. In this case, the

table is collecting customers.
Column: The definition of a table includes the attributes of the thing being

described. Each attribute to be collected is called a column.
Row: A record that is physically stored in the table is called a row. Each row

is inserted into a table, and contains values for each column.

48 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Document: A document store contains documents. Documents are like the
rows of tables – they represent instances of things being described.
(Documents also have some key differences from rows, as we will
see in a moment.)

Field: Documents have fields. Fields are similar to columns in a
relational store. (Unlike a relational store, though, the fields do not
have to be defined in advance.)

Collection: Documents describing a single kind of thing are called a collection.
Collections are like tables.

The primary focus of a document store is the document itself, which is similar to a
row. Contrast this to a relational store, where the primary focus is the table. This
nuance sheds light on some of the key differences between these approaches.

49 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

A collection does not define document structure. Instead, each document has an
internal structure. This means that it is up to the applications that write documents to
the repository to declare their structure.
Documents are typically formatted using XML (extensible markup notation) or
JSON (JavaScript object notation.) These notations allow the declaration of both
structure and content.
Documents are made up of fields, and fields have two parts: a tag describing the
filed, and its value.

50 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

These fields are similar to key-value pairs. In fact, document oriented databases are
often built on top of key-value stores.

51 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Unlike a relational design, a field can have multiple values. In a relational model,
this kind of data would likely require multiple tables.
For example, the document above describes a customer who has multiple customer
types – retail and online. These two types are represented in the single customer
document.
In an ER model, the repeating attribute would usually be placed in a separate table,
with a many-to-many relationship to customer.

52 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Documents can contain other documents.
In this example, a customer document contains a field called address. The address
value itself has a structure like a document, with its own set of fields and values. It
is usually referred to as a subdocument, since it is not stored separately.

53 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Unlike a relational store:
•  The structure of documents in a collection is not defined in advance. (In

relational storage, the structure of each row is defined in advance.)
•  Documents define their own structure; the collection does not control document

structure. (In relational storage, the table defines the format of a row.)
•  Document structure can vary from document to document. The fields do no not

have to be identical. (In a relational table, each row has identical structure.)
•  A field can have different data types across documents. (In relational table, a

column has a single data type for all rows.)
•  A field can have multiple values. (In relational table, each column contains one

value per row.)
•  Documents can be nested.

54 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

While document databases look very different from relational databases, they store
the same kind of information. Using our standard notation, we can makes sense of
what is contained in a collection of documents.
The top level organizing principle in a document database is the collection. In this
picture, you see a collection of documents that describe customers.
Using our standard notation, we represent this collection as a thing called
“Customer.”

55 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Each document within the collection has an ID, which serves as a key to access the
document. Document ID’s are identifying information.
Using our standard notation, the document id is listed with a star, indicating
identifying information for a customer.

56 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

The various tags and values in a document provide information about the customer it
describes. For example, the first document in this list contains Name, Type, and
Status.
These key value pairs are properties of the thing called customer.

57 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

This customer has multiple types. In document parlance, it is an array.
To indicate that a customer type can have multiple values, we place the repeating
property symbol >> in front of it.

58 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Notice that these two customers have a property called Status, but the values are
integers in one case and a string in another case.
The notation describing the customer thing does not express data types. However, it
will be useful to track the different values, and possibly map them to one another.
For example, status “4” may be equivalent to status “Active”. It will be necessary to
know this when searching documents for active customers.

59 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Documents do not have fixed structure. Each time a customer document is written
to the repository, it may contain additional fields that have not been seen before.
We can represent this flexible structure by declaring a generic property inside square
braces. Since it is possible for a document to have multiple properties that were
unanticipated, the repeating property symbol >> also appears.

60 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

In a document oriented database, an association can take two forms. The first is an
embedded association.
Here, the address is contained as part of the same document that describes the
customer. Embedding the address makes the document easier for an application to
work with. Everything about the customer can be found in a single document.
This is the normal way to organize documents in a document store; documents are
self encapsulated and include all necessary information about their subject.

61 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

The second form of association is association by reference.
Here, the customer document does not contain the address. Instead, it contains an
address ID. This is the identifier of a specific address in a collection of addresses.
In a document database, reference by association places additional burdens on the
application. Among other things:
•  The database does not guarantee that address ID 28282 exists in the address

collection. It is up to application programmers to see to referential integrity.
•  If an application needs a customer and their address, the application has

additional work to do.
Normally, documents are organized to be self-contained, meeting the needs of
applications without requiring additional programming for “joins.”

62 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Documents do not distinguish properties from metrics, but from a business
perspective we do.
This document, for example, contains fields that describe order quantity and order
price. These fields are metrics; we can imagine slicing, dicing and aggregating
them.
In our representation of an order, they are flagged with the metric symbol.

63 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Document storage is convenient when applications will focus on self contained
units, such as customers, orders, log records, and so forth. While it is possible to
request a group of related documents from a document store, this is more
complicated form an application development standpoint.
Document stores do not enforce referential integrity within or across collections. If
you have an order document that contains a product ID, the repository will not be
sure the corresponding product is up to date.
Document stores allow for flexible, variable nature of documents.
These characteristics have advantages when recording data, but can be difficult
when querying data. The application looking for blue products must know to check
for documents where product_color=“Blue” as well as where is_blue=“True”. If a
new document is added with the field is_blue=“Yes”, the application will not count
it, nor will it count one that is inserted with the field exterior=“Blue”.
In the world of BI:
Capture: Document stores are suitable for intake, where the format of the source
data is not controlled, or where there are multiple sources that do not adhere to a
single source.
Explore: Document stores are suitable for business analytics, where the focus is on
individual examples of things in the context of a single business activity.
Augment: Document stores are not suitable as the home of OLAP data, as they
contain unpredictable fields, lack referential integrity, and are not well suited to
aggregation. Instead, the document store may serve as a source to move important
attributes into the structured world of the data warehouse.
Extend: Documents may be the format of record for details around a transaction. In
this respect, a document repository may be linked to the data warehouse by way of

64 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

The document format and access methods are a natural fit in supporting electronic
data interchange (EDI) between businesses.
For example, parts manufacturers may specify their product characteristics in an
XML format. This information can be stored in a document database on either end
of the exchange. The self-contained and self-defining characteristics of documents
adapt nicely to the nature of many EDI formats.

65 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Machines and systems often store data in a document format.
Examples include:
•  Logs
•  Preferences
•  Settings
•  Alerts
•  Notifications
•  Activity results

66 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

The document format is used in a variety of business applications.
Content Management Systems use a document format to store the content of a web
site, blog, or storefront. Formatting can be applied separately and tied to document
characteristics such as Title, Header, Comment, etc.
Catalogs of products, services or resources exhibit a wide variation in attributes.
The flexible nature of a document lends itself to specifying items of interest in a
manner that may be more efficient than an RDBMS.
Customer Support applications can track incidents and related activities using a
document format.
Workflow Management applications can specify documents (such as applications
or claims), and activities (such as processing or adjudication steps), using a
document format.
Forms used inside or outside of a business can be defined and filled in using a
document database.

67 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

68 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

The purpose of graph databases is to describe relationships among things. The focus
is distinctly different from relational databases where relationships are secondary to
things. In a graph database the relationships are the primary data of interest and the
many use cases are predicated on exploring relationships.

© Adamson, Fuller, Wells. All rights reserved. DO NOT COPY 69

This example, seen earlier in the course, illustrates relationships of customers,
orders, books, and authors. Note that relationships in this model are unidirectional –
e.g. customer purchases book. In a relational implementation we would have a
bidirectional – customer purchase book and book purchased by customer – with
rules of cardinality for the relationship. The modeler’s perspective on relationships
changes when shifting from relational to graph databases.

70 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

The language of graph databases is different from that of relational too. The things
in a graph database are known as nodes or vertices. Relationships are called edges.
Each node represents a thing (an entity in relational language) and each edge
represents a relationship between exactly two nodes.

71 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Some graph databases support the concept of hyperedges that allow more complex
relationships than the binary relationship of exactly two nodes. A hyperedge is the
boundary for a group of nodes using a set-theory concept – for example, all of the
books by Adamson as a set. The hyperedge describes a the relationship of the group
of nodes with other nodes, thus author Adamson is related to multiple book nodes
not as several discrete edges, but as a single edge.

72 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

With the strong focus on relationships in graph databases it is typical that many
properties are attached to edges. Unlike relational databases where entities have
many properties and relationships have few, a graph database supports a large
number of relationship properties.

73 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

This diagram illustrates the modeling notation to represent things in a graph
database model. Things correspond to nodes in the database structure.

74 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

This diagram shows how identities are represented in the modeling notation. Things
(nodes) have identity and identifying properties. Edges do not have identity distinct
from the nodes for which they describe a relationship.

75 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Edges are the associations in a graph database. The diagram above shows how they
are represented using the modeling notation. Note the repeating identifiers >>order
id and >>book id. The repeating characteristic is indicative of a one-to-many
association – as close to the relational concept of cardinality as is practical in a
graph database.

76 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Many-to-many relationships do exist in the real world and are readily represented
with entity relationship models, but in graph databases they are represented as two
distinct one-to-many associations. The model example above illustrates that
notation. One order is associated with many books (order id, >> book id) and one
book is associated with many orders (book id, >> order id).

77 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

The diagram above illustrates representation of properties in a graph database using
the modeling notation. Note that both nodes (things) and edges (associations) may
have properties, although for many applications the main properties of interest
describe the edges.

78 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

The diagram above illustrates metrics notation for a graph database. Any
quantitative property (numeric and suited to mathematical manipulation) in a graph
may be considered as metric data. Both nodes and edges may have metric properties.
The example above shows the node book with a quantitative property of sales rank.
It also shows metric properties – quantity and cost – for the edge associating order
with book.

79 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Social networks such as Facebook or LinkedIn connections are among the most
common examples of graph database applications.

80 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Visualizing networks of many kinds – people, transactions, property, etc. – is used to
view relationship patterns. Understanding normal and exceptional patterns is
valuable for applications such as fraud and threat detection. These types of
relationship visualizations are also useful for patterns and rules discovery.

81 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

Relationships among words and phrases are mapped with graph databases to build
semantic networks and discover semantic inferences. These networks, when
combined with text mining, are particularly powerful ways to find deep meaning in
text data.

82 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

83 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

© Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

© Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

© Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

87 © Adamson, Fuller, Wells. All rights reserved. DO NOT COPY

